EXAM FEVER

Grade 12

MATHS LITERACY

TEACHER'S GUIDE

Compiled by Shanira Krishen

1. Measurement

A. Converting Units Question 1
$1.10,025 \mathrm{~m}$
$1.2 \quad 23005 \mathrm{ml}$
1.3 45ha

Question 2

$6000 \div 4,546=1319,84$ gallons
B. Recipes

Question 1
$1.1 \quad 1250 \mathrm{ml}$
1.2.1 226, 8 g
1.2.2 255,15g
1.2.3 $\quad 187,5 \mathrm{ml}$
1.2.4 8 eggs

Time
Question 1
1.143 minutes
$1.2 \quad 11: 57$
Question 2
Time $=34 \div 85$
12: $12-24$ minutes $=11: 46$
$=0,4 \mathrm{~h} \times 60$
$=24 \mathrm{~min}$
Mr Son did not leave at 11:40

Question 3
$3.1 \quad 724 \mathrm{~km}$
3.2 Time $=1 \mathrm{~h}+45 \div 60=1,75 \mathrm{~h}$

Average speed $=\underline{189}$
1,75
$=109 \mathrm{~km} / \mathrm{h}$

Question 4

4.1 Difference in time $=1,56-1,2=0,36 \mathrm{~s}$ $\%$ increase in reaction time $=\underline{0,36 \times 100}$
= 30\%
$4.2 \quad 36,34 m$
Question 5
$5.1 \quad 90 \mathrm{~km}$
$5.2 \quad 08: 45$
5.3 a) $60 \mathrm{~km} / \mathrm{h}$
b) 96 km

Question 6

$6.1 \quad 33$ minutes
6.26 minutes
$6.3 \quad 2500 \mathrm{~m}$
$6.4 \quad 500 \mathrm{~m} / \mathrm{min}$

Timetables

Question 7
7.150 minutes
7.2 Time $=55 \mathrm{~min} \div 60=0,92 \mathrm{~h}$

Speed $=\underline{320,2 \mathrm{~km}}$
0,92h
$=348,04 \mathrm{~km} / \mathrm{h}$
7.3 SA 8809
C. Length and Distance

Question 1

$1.1 \quad 131,25 \mathrm{~cm}$
$1.2 \quad 15 \mathrm{~cm}$
Question 2
**Length of certificate is $29,5 \mathrm{~cm}$
$2.1 \quad 10 \mathrm{~cm}$
$2.2 \quad 24,5 \mathrm{~cm}$
$2.3 \quad 78,5 \mathrm{~cm}^{2}$
$2.4 \quad 101 \mathrm{~cm}$
$2.5 \quad 619,5 \mathrm{~cm}^{2}$
Question 3
3.1290 m
$3.2 \quad 307,92 \mathrm{~m}^{2}$
3.3 4,90 hours
D. Mass and Volume

Question 1
1.1 $\mathrm{BMI}=24$
1.2 Normal weight

Question 2
2.16 months to 2 years
$2.2 \quad 8 \mathrm{~kg}$
$2.3 \quad 12$ months to 15 months (one age in this range).
2.4 February
2.5 $\mathrm{BMI}=$ weight
height ${ }^{2}$

$$
h^{2}=\frac{112}{19,5}
$$

$$
\begin{aligned}
h & =\sqrt{0,5743} \ldots \\
& =0,758 \mathrm{~m}
\end{aligned}
$$

Question 3

$3.1 \quad 33,75 \mathrm{ml}$
$3.2 \quad{ }^{* *}$ Change $13,5 \mathrm{ml}$ to $13,5 \%$
$13,5 \times 1000=135 \mathrm{ml}$
100
Question 4
$4.1 \quad 90000 \mathrm{~cm}^{3}$
4.2 Height of liquid $=$ volume of liquid length \times breadth

Question 5

Volume $=1,733 \mathrm{~m}^{3}$

$$
\begin{aligned}
& =\frac{3000 \mathrm{~cm}^{3}}{50 \times 40} \\
& =1,5 \mathrm{~cm}
\end{aligned}
$$

Question 6
$6.1 \quad 113112 \mathrm{~cm}^{3}$
$6.2 \quad 113112 \mathrm{~cm}^{3} \div 1000=113,112 \ell$
1 basin $=1 / 2$ capacity $=56,556 \ell$
Therefore $2 \times 56,556 \times 3=339,336 \approx 339,34 \ell$
6.3.1 $339,34 \div 9=37,70 \mathrm{l}$
6.3.2 YES or NO with logical reasons
E. Temperature

Question 1
$180^{\circ} \mathrm{C}$
Question 2
2.1 C
$2.2 \quad 15^{\circ} \mathrm{C}$
Question 3
$3.1 \quad 27^{\circ} \mathrm{C}$
3.2 Harare or New Delhi
3.3 Amsterdam
3.4 Harare
$3.5 \quad 10^{\circ} \mathrm{C}$
$3.655,4^{\circ} \mathrm{F}$
F. Perimeter, Circumference and Area

Question 1

1.1 18m
$1.2 \quad 18 \mathrm{~m}^{2}$
1.3 Dimensions of path + flower bed : Length $=7 \mathrm{~m}$ Breadth $=4 \mathrm{~m}$

Area of path and flower bed $=7 \times 4=28 \mathrm{~m}^{2}$
Area of path $=28 \mathrm{~m}^{2}-18 \mathrm{~m}^{2}$

$$
=10 \mathrm{~m}^{2}
$$

Question 2

2.162 m
$2.2 \quad 81 \mathrm{~m}$
2.3 194,8m
$2.43019,46 \mathrm{~m}^{2}$

Question 3

5 litres of paint can cover $5 \mathrm{l} \times 1000=5000 \ell \times 50=250000 \mathrm{~cm}^{3}$
Display boards: $48 \times 25 \mathrm{~mm}=1200 \mathrm{~mm}=120 \mathrm{~cm}$

$$
36 \times 25 \mathrm{~mm}=900 \mathrm{~mm}=90 \mathrm{~cm}
$$

$$
\text { Area }=120 \times 90=10800 \mathrm{~cm}^{3}
$$

Spray paint is enough for : $\underline{\mathbf{2 5 0} 000}=23,148$ boards 10800
Therefore 5ℓ is not enough.

Question 4

4.1 Radius of place mat $=30 \div 2=15 \mathrm{~cm}$

Radius of tablecloth $=4 \times 15=60 \mathrm{~cm}$
Circumference $=377,04 \mathrm{~cm}$
$4.2 \quad 80$ beaded segments

G. Theorem of Pythagoras

Question 11
Length of ladder $=2,29 \mathrm{~m}$
H. Surface Area and Volume

Question 1
SA $=1099,7 \mathrm{~cm}^{2}$
Question 2
***Change radius to 5 cm
2.1 SA of cylindrical holder $=2 \pi r h$

$$
\begin{aligned}
& =2 \times 3,142 \times 5 \times 15 \\
& =471,3 \mathrm{~cm}^{2}
\end{aligned}
$$

2.2 SA of rectangular holder $=2 \mathrm{lh}+2 \mathrm{bh}$

$$
\begin{aligned}
& =(2 \times 10 \times 15)+(2 \times 10 \times 15) \\
& =600 \mathrm{~cm}^{2}
\end{aligned}
$$

Question 3

**Change length to 6 cm
$3.1 \quad 6,928 \mathrm{~cm}^{2}$
3.2 TSA $=2 \times$ Area of triangular face $+3 \times$ length \times width

$$
=2 \times 6,928+3 \times 6 \times 4
$$

$$
=85,86 \mathrm{~cm}^{2}
$$

Question 4

Curved surface area of cylinder

$=\pi \times$ diameter \times height
TSA of sticker for cylinder A
$=[(\pi \times d)+1] \times$ height
$=[(3,142 \times 30)+1] \times 30$
$=2857,8 \mathrm{~cm}^{2}$
TSA of sticker for cylinder B
$=[(\pi \times d)+1] \times$ height
$=[(3,142 \times 40)+1] \times 20$
$=2533,60 \mathrm{~cm}^{2}$
Therefore, cylinder B requires less material.

Question 5

5.1 To protect the base of the drum from burning.

To bring the fire closer to the grid.
$5.2 \quad * *$ Volume $=108$ e

$$
1 \mathrm{l}=1000000 \mathrm{~mm}^{3}=0,001 \mathrm{~m}^{3}
$$

Volume of braai drum $=108 \ell \times 1000000 \mathrm{~mm}^{3}$

$$
=108000000 \mathrm{~mm}^{3}
$$

Radius of braai drum $=\frac{572}{2}=286 \mathrm{~mm}$
Volume of braai drum $=1 / 2 \pi r^{2} \times h$

$$
\begin{aligned}
108000000 \mathrm{~mm}^{3} & =1 / 2 \times 3,142 \times(286)^{2} \times \mathrm{h} \\
\mathrm{~h} & =\frac{2 \times 108000000 \mathrm{~mm}^{3}}{3,142 \times(286 \mathrm{~mm})^{2}} \\
& =840,451 \\
& \approx 841 \mathrm{~mm}
\end{aligned}
$$

Length is 1% more than height of drum.
1% of $841=8,41 \mathrm{~mm}$
Length of grid $=841 \mathrm{~mm}+8,41 \mathrm{~mm}$

$$
=849,41 \mathrm{~mm}
$$

$$
\approx 850 \mathrm{~mm}
$$

Question 6

6.1 Volume $=7,5 \mathrm{~m}^{3}=7,5 \mathrm{kl}$
6.2 $\mathrm{SA}=\mathrm{lb}+2 \mathrm{lh}+2 \mathrm{bh}$

$$
=18,5 \mathrm{~m}^{2}
$$

Question 7

7.1 Above the ground is a higher security risk/Safety reasons/Water stays cool.
$7.21 \mathrm{l}=1000 \mathrm{~cm}^{3}$
8000 e $=8000000 \mathrm{~cm}^{3}=8 \mathrm{~m}^{3}$
Volume of cylindrical tank $=\pi \times r^{2} \times$ length

$$
8 m^{3}=3,142 \times r^{2} \times 2,9
$$

$$
r^{2}=8 m^{3}
$$

$$
3,1 \overline{42 \times 2,9}
$$

$$
=0,87798239 \ldots
$$

$$
r=\sqrt{0,87798239}
$$

$$
=0,937 \mathrm{~m}
$$

Diameter $=1,874 \mathrm{~m}$

2. Finance

A. Taxation

Question 1

1.1 R44,85
$1.2 \quad 7$ bangles
1.3 R3,28
1.4 R145,61

Question 2

2.1 July 2013
2.2 Water and sewerage; Refuse removal
2.3 20/12/2016
$2.4 \quad 12,00 \mathrm{kl} \div 23$ days $=0,522 \mathrm{kl}$
2.5 Water - The amount of water consumption is not the same every month.
2.6 A : R690 $000 \times \mathrm{RO}, 0069160 \div 12$
= R397,67

B : R397,67-R115,27

$$
=\text { R282,40 }
$$

2.7 R298,36 $\div 463$
= R0,644406475 $\approx R 0,64$
2.8 R919,33
2.9 Rounding up

Question 3
3.1 R1152 + R816 + R424 Member's contribution $=1 / 3 \times 2816$
$=$ R2816 $=$ R938,67
3.2.1 Union membership $=$ R35

Pension $=7,5 / 100 \times 7986,50=R 598,99$
PAYE $=(R 7986,50-R 4750) \times 18 \%=R 582,57$
Medical Aid Contribution $=$ R938,67
Total deduction $=$ R35 + R598,99 + R582,57 + R938, 67
= R2155,23
3.2.2 Net salary = R7986,50 - R2155,23
= R5831,27

Net annual salary $=$ R5831,27 $\times 12$
= R69 975,24

Question 4

$4.196264+36 \%(450000-406400)$ = R111 960
Less rebate $=$ R111 $960-$ R13 500

$$
\text { = R98 } 460
$$

4.2 Tax credits $=$ R268 + R268
= R572

$$
\begin{aligned}
\text { Monthly tax } & =\text { R98 } 460 \div 12 \\
& =\text { R8 } 205
\end{aligned}
$$

4.3 Net monthly tax = R8 205 - R572

$$
\text { = R7 } 633
$$

Question 5

5.1 Employer provides people with a job or work for pay/ Employer is the company or individual who offers work opportunities for pay.
5.2 To give an employee a short term relief should he/she become unemployed.
5.3.1 R4 736,88
5.3.2 Total UIF $=$ R125,44

Question 6

Income Tax = 147996 39\% $\times(663000-550$ 100 $)=$ R192 027
Total tax after rebate = R192 $027-$ R13 500-R7 407

$$
\text { = R171 } 120
$$

B. Tariff Systems

Question 1

$$
1.1 \mathrm{RO}
$$

$1.2221 / 2$ l
$1.312 \mathrm{kl}-6 \mathrm{kl}=6 \mathrm{kl} \therefore$ amount payable is R 45 .

Question 2

2.1 Cost $=R 44,82+(2 \times R 8,22)=R 61,26$
2.2 R51, 54

Question 3

**The graph below shows the cost of parking at a garage that is open $\mathbf{1 2}$ hours daily.
3.11 hour
3.2 3-4 hours
3.3 R20
3.4 R7

Question 4

4.1 R465
4.2 Queenstown; King Williams Town
4.3.1 Port Elizabeth to Bloemfontein is R435.

$$
\text { Cost }=\text { R } 755-\text { R435 = R320 }
$$

4.3.2 King William's Town
4.4 Single $=$ R410 Double $=$ R820; 1 year $=$ R820 $\times 12=$ R9 840

Question 5

$5.1 \quad R 17,76+(1 / 3 \times R 17,76)=R 23,68$
5.2 2017: Sunday work wage $=19,39 \times 150 \%=R 29,09$

$$
\text { Total wage }=3 \times 9 \times R 29,09=R 785,43 \quad O R
$$

2016: Sunday work wage $=17,90 \times 150 \%=$ R26, 85

$$
\text { Total wage }=3 \times 9 \times \text { R26,85 }=\text { R724,95 }
$$

5.3 a) $16,40+(3 / 100 \times 16,40)=R 17,76$
b) $100+8,3=108,3 \%$

$$
\begin{aligned}
& \frac{21,93}{108,3 \%} \\
& =\text { R20,25 }
\end{aligned}
$$

5.4 R2 540

Question 6

Number of litres of petrol $=\underline{7,5 \times 40}=3 \mathrm{l} \quad$ Cost of petrol $=3 \times$ R9, $82=$ R29,48
$100 \quad \therefore$ R29,48 $\times 20$ days $=$ R589,60
Car Maintenance : $(40 \mathrm{~km} \times \mathrm{RO}, 70) \times 20$
Total cost $=$ R589,60 + R560
$=$ R560
= R1 149,60

C. Income and Expenditure; Budgets; Profit and Loss

Question 1

1.1 Copyright payments; Advertising costs; bursary; grants.
1.2 R63 - (R27,02 + R21, $02+$ R23, 78) billion = R11, 11 billion

Percentage donations $=\underline{11,11} \times 100=17,6 \%$
63
$1.3 \underline{0,7} \times 54100000000=378700000$ million or 378,7 million. 100
1.4 Difference $=$ income - expenditure
= R63 billion - R54,1 billion
$=R 8,9$ billion or $R 8900$ million or $R 8900000000$
1.5 a) $\%$ increase $=\underline{\text { R70,9 billion }- \text { R54 billion } \times 100}$

R54 billion
= 31,296\%
b) $7+118=125$
$7 / 125 \times$ Total budgeted income $=$ R70,9 billion Total budgeted income $=$ R70,9 billion $\div 7 / 25$

$$
\begin{aligned}
& =\text { R1 } 266,07 \text { billion } \\
& =\text { R1 } 266 \text { billion }
\end{aligned}
$$

Question 2

2.1 R3 718,75
2.2 R6 906,25
2.3 R3 $500+(R 18 \times 21)+R 135+R 250+(10 / 100 \times 10625)=R 5325,50$
2.4 R1 580,75
2.5 R1 259 + R500 = R1 $759 \quad$ R1 580,75 - R1 $759=-R 178,25$

No, since he is short of R178,25.

Question 3

3.1 Replacing a geyser/Garden services
3.2 15\%
3.3 R3 000
3.4 R4 500

Question 4

4.1 1 March 2012 to 28 February 2013
4.2 Local Municipality subsidy
4.3 Total income $=$ R443 $520 \quad$ Percentage $=69,5 \%$
4.4 R209,32
$4.5 \quad$ R443 520 - R397 019 = R46 501
The Lighthouse Foundation made a profit.
Question 5
5.1 R1 $050 \times 6=$ R6 300
5.2 Total cost in rands $=(60 \times 4 \times$ number of breakfasts $)+(90 \times 4 \times$ number of lunches) $+(120 \times 4 \times$ number of suppers)
5.3 Total cost $=(60 \times 4 \times 5)+(90 \times 4 \times 4)+(120 \times 4 \times 5)$

$$
\text { = R5 } 040
$$

D. Cost Price and Selling Price

Question 1

$1.1 \mathrm{RO}, 75$
1.22 packets $\times R 6=R 12 \quad$ Profit $=R 12-R 9=R 3,00$

Question 2

**Swap labels for graph i.e. In-store purchases and Internet purchases
2.1 It is convenient/cheaper/purchases are delivered to you.
2.2 Electronics: $51 \%-43 \%=8 \%$

Sports Equipment: $44 \%-36 \%=8 \%$
2.3 Any item where in-store graph is higher than the internet graph with a valid reason e.g Electronic/Groceries/Jewellery

Question 3

3.1 a) Return distance $=2 \times 45 \mathrm{~km}=90 \mathrm{~km}$

$$
90 \mathrm{~km} \text { is between } 50 \mathrm{~km} \text { and } 90 \mathrm{~km} \therefore \text { cost }=\mathrm{R} 800
$$

b) Return distance $=100 \mathrm{~km}+36 \mathrm{~km}$

Cost $=$ R800 $+(R 36 \times 5)=R 980$
3.2 R800 + (number of km over $100 \mathrm{~km} \times 5$)
3.3 Distance travelled $=\frac{\text { R1 } 650-\mathrm{R} 800}{\text { R5 }}+100 \mathrm{~km}=270 \mathrm{~km}$

E. Break-even Analysis

Question 1

1.1 a) R750
b) Loss
c) 10
d) At the break-even point the cost to make 10 toys is equal to the income received when 10 toys are sold.
1.2% profit $=\underline{400} \times 100=47,06 \%$

$$
850
$$

Question 2

2.1 a) $\mathrm{R} 50+\mathrm{R} 35+(2 \times \mathrm{R} 10)=\mathrm{R} 105$
b) \quad b62 500
$2.2 A=R 87500 \div 125=700$

$$
B=\frac{800 \times 125}{1000}=100
$$

2.3 a) Number of sets $=500$

Income at break-even point = R62 500
b) \quad Profit $=$ Income - Expenses

R6 $000=(125 \times$ no. of sets $)-(10000+105 \times$ no. of sets $)$
No. of sets $=800$
F. Interest; Hire Purchase

Question 1

$1.1 \quad$ R235 891
$1.2 \quad 1^{\text {st }}$ year $=51600-(13,5 / 100 \times 51600)=$ R44 634
2nd year $=44634-(13,5 / 100 \times 44634)=R 38608,41 \approx R 38600$

Question 2

2.1 a) R2 429,10
b) $\quad R 269,90+(R 177,53 \times 24)=R 4530,62$
$2.2 \quad{ }^{* *}$ Suppose Thandi takes a loan from ABC Bank for the full cash price of the dishwasher. She is charged an interest rate of 18% compounded per annum and agrees to repay the loan over two years.
Calculate the total amount paid back after two years.
$1^{\text {st }}$ year: $2699+(18 / 100 \times 2699)=$ R3 184,82
$2^{\text {nd }}$ year: $3184,82+(18 / 100 \times 3184,82)=$ R3 758,09
Question 3
$3.1 \quad 31 / 2$ years
3.2 R45 286,92
$3.3 \quad 15 / 100 \times 29999=$ R4 499,85

G. Banking, Loans and Investments

Question 1

1.1 7,63
$1.28,35$
1.3 Monthly = R11 087,50

Question 2

2.131 or 32
2.2 Total credit $=-$ R37,81 $+(-$ R200 $)+(-R 0,01)=-R 237,82$

Total debit $=$ R200 + R400 + R31 716,69 + R10 770,00 $=$ R42 690,69
Closing balance $=$ R42 690,69 $+(-$ R237,82 $)$

$$
=R 42452,87
$$

2.3 Safety reasons/Prevent fraud/Confidentiality
2.4 Insurance premium $=$ R42 $452,87 \div$ R1000 $=42,45287 \approx 43$

Insurance cost $=43 \times$ R3,50 $=$ R150,50
2.5 The bank owes Mr Son R37,81 or the account has a credit balance.
2.6 Mr Son does not have large amounts of cash to purchase expensive goods/ Safety reasons.

H. Inflation

Question 1

1.1 July and August
1.2 February; May; September; December
1.3 October and November or September and October(1 mark) and November and December(1 mark).
$1.439 \%-(-4 \%)=8 \%$
1.5 Cost $=150-(8 \% \times 150)=R 138$

Question 2

2.1 Let x be the price of the bicycle in 2008.

Price of bicycle : $x+5,8 \%$ of $x=1586,95$

$$
\begin{aligned}
1,058 x & =1586,95 \\
x & =R 1499,95
\end{aligned}
$$

2.2 Cost after 6 years(from 2009 to 2014) $=$ R7,64

Question 3

3.1 Draw graph
3.2 a) The graphs show a similar trend of month-on-month changes in prices e.g. An increase from May to November or a decrease from January to February.
3.2 b) Prices are generally high in December and January due to the festive season and tend to drop in February/ Prices tend to increase in winter months(May, June and July) as fruit becomes scarce.

I. Exchange Rates

Question 1

R110,35 × 9,48 = DZD 1046,12

Question 2

1 US\$ $=0,72025 € \therefore 150$ US\$ $=108,0375 €$
1 Russian rouble $=0,0230344 € \therefore 108,0375 €=\frac{108,0375}{0,0230344}=4690,27$ rouble

Question 3

$3.120 \times 0,95=19$ BWP
3.2 Accommodation $=3 \times 360286=1080858$ ZMK

$$
\therefore \frac{1080858}{681,07}=\mathrm{R} 1586,999 \approx \mathrm{R} 1587
$$

Question 4
4.1 R6 235,93
4.2 £7,02

3. Data Handling

A. Developing questions; Samples and Populations

Question 1

1.1 Limpopo and Western Cape

Difference $=30,1 \%-6,7 \%=23,4 \%$
1.2 ($100 \%-9,1 \%$) of 911,118
= $828206,262 \approx 828207$ or 828206
1.3 Difference in $\%=61,8 \%-13,2 \%=48,6 \%$

Difference in usage $=48,6 \% \times 264654=128621,844 \approx 128622$
$1.41388957=\underline{x+11560207}$
9
$x+11560207=12500613$
$x \quad=940406$
1.5 The provinces with high cellphone usage have a corresponding relativity high computer usage.(Any other justification)

B. Collecting Data

Question 1

1.1 17,634 millions of tons
1.2 Iran
1.3 Saudi Arabia

Question 2

2.1 4,4\%
2.2 (a) $4720000 \div 10,0 \%=47200000$
(b) $45,0 \% \times 621600 \approx 279700$
(c) $5060000 \div 48653800=10,4$
2.3 1:0,1

Question 3
3.13180118
3.2 79,3\%
3.3 1:3
3.4244 282; 609 029; 760 029; 784 347; 922 171; 1120 567; 1762 494; 1956 497;

4013463
3.5 Northern Cape

C. Classifying and Organising Data

 Question 11.1 (a) 20\%
(b) 100%
1.2 Answers to be done on the frequency table.

D. Summarising Data

Question 1

1.1 Mean = 38
1.2 a) Range $=13$
b) Mode $=35$; 37
c) Median $=35$

Question 2

$2.17,51 ; 7,51 ; 7,64 ; 7,71 ; 7,81 ; 7,91 ; 8,05 ; 8,22$
2.2 7,51m
$2.30,71 \mathrm{~m}$
$2.47,73 \mathrm{~m}$
2.5 Charles

Question 3

3.1 6;7;8;8;9;11;11;12;14;14;14 3.2 Dog K
3.314
3.48
3.56
$3.65: 2$

Question 4

4.1 35;39;39;60;63;84;93;107;117;120;126;142
4.2 July $/ 7^{\text {th }}$ month
4.39
4.4 April/4 ${ }^{\text {th }}$ month
4.5 May and July or $5^{\text {th }}$ and $7^{\text {th }}$ month

Question 5

5.1 No data was available for Japan/Japan did not provide data.
5.2 Range = Maximum - Minimum

463223 = Maximum - 4612
Maximum $=463223+4612$

$$
=467835
$$

5.376434
5.4 No mode
5.57 countries

Question 6

6.146
6.256
$6.3 \quad 36$
$6.4 \quad 20$

Question 7
7.1 India
$7.2 \quad 2,34$
7.3 Countries with high rankings are developed(rich $1^{\text {st }}$ world) as well as underdeveloped/developing(poor, $3^{\text {rd }}$ world).
7.4 India: Mean Daily wage $=236,51 \div 93,76 \% \approx 252,25$ rouble

SA: Mean Daily wage $=237,35 \div 26,20 \% \approx 905,92$ rouble
Difference $=905,92-252,25=653,67$ Russian rouble
7.5 Range $=425,52-21,44=404$, 08 Russian rouble

1 Russian rouble $=0,016$ euro
$\therefore 404,08$ Russian rouble $=404,08 \times 0,016$ euro $=6,46528$ euro
1 South African rand $=0,070$ euro
$\therefore 6,46528 \div 0,07=\mathrm{R92}, 36$
\therefore Learners solution is incorrect.

Question 8

8.1 a) $A=37+15=52$
b) $34=\underline{494+2 B}$
$2 B=(34 \times 16)-494$

$$
=50
$$

$$
\therefore B=25
$$

c) Median $=34,5$
8.2 The mean, median and range for 7 February are less than those for 14 February. This means that his customers had to wait for a shorter time on 7 February than 14 February.
It could mean that more people came to eat at this eating place on 14 February because of Valentine's Day or he had less staff on the $14^{\text {th }}$.

Question 9

9.1 Numerical
9.250%
9.368
9.456
9.550
9.666
$9.7 \quad 70=\frac{174+H}{26}$
$1820=1741+\mathrm{H}$
$H=1820-1741$
$=79$
Question 10
$10.175^{\text {th }}$ percentile
75% of two-year old boys weigh less than him or 25% of 2 year old boys weigh more than him $(13,6 \mathrm{~kg})$
$10.250^{\text {th }}$ percentile
50% of 33 month old boys are shorter than him or 50% of 33 month old boys are taller than him.

Question 11

11.1 a) $P=\frac{67+78}{2}=72,5 \%$

$$
R=99-59=40
$$

$$
Q=\underline{1029}=73,5 \%
$$

14
b) Bathini High - The highest mark was attained in this school and their lowest mark was still higher than the lowest mark of Vuka Secondary.
11.2 a) $90 \% ; 95 \%$; 98%
b) 4 learners
E. Representing Data Question 1
1.1822
1.2 Bar graph

Question 2
$21+30+9=60$
Question 3
3.1 Bar Graph/Single Bar graph
3.2 Three hundred and sixty one thousand nine hundred and forty eight.
3.3 Question five.
3.4 Average time per mark
$=180 \div 150=1,2 \mathrm{~min}$

Question 4

4.1 18,2\%

$4.2 \quad 2245227$
$4.3 \quad A=13,9 \% ; B=12036739$

Question 5

5.1.1 $\quad 394$ million
5.1.2 55,12 million
5.1.3 46\%
5.2.1 Cellphone/i-pad
5.2.2 30\%
5.2.3 88\%
5.2.4 28620000

Question 6

6.1 Eastern Cape
6.2 Supporting the needy/poor/sick/elderly/orphaned
6.3 No. Two categories/types or topics of data are given or there are too many sectors(18) to be accurately/easily represented using a single pie chart.
6.4 Total number of citizens receiving social grants = 17149931
\therefore Limpopo $\%=\underline{2405846} \times 100=14,03 \%$
17149931
6.5 Gauteng: 1:0,5006 Western Cape: 1:0,664672
\therefore Gauteng

Question 7

Draw a Vertical Stack Graph

Question 8

Draw a Histogram

Question 9

9.110
9.2 North Atlantic
9.3 Line graph
9.4 Western Pacific: total storms $=39+30+52+34+40=195$

Damages in million USD $=10200+8410+22800+6080+10600=58090$
North Atlantic: total storms $=12+9+13+19+19=72$
Damages in million USD $=590+232+1510+75000+21000=98332$
\therefore Not a valid statement.
Western Pacific had the most storms but North Atlantic had the greatest amount of damages.

Question 10

10.1 16\%
10.2 Liberty/Club E
10.312% of $300=36$

F. Interpreting and Analysing Data

Question 1

1.1 Vivesh's sales in 2012 was more than double his sales in 2011 or there was an increase in percentage sales from 12% to 28%.
1.2 He read Mabel's and Henry's combined sales of 2011 and 2012 as the sales for 2012.

Henry's sales for 2012 were only 25%, Mabel's sales were 21% and the person with the highest sales was Vivesh with 28%.
1.3 Different types of bar graphs/Line graphs/Pie charts

4. Probability

A. Expressions of Probability

Question 1

1.1 Certain
1.2 Impossible
1.3 Fifty/fifty

Question 2
2.1 C
2.2 Likely/less less likely

B. Calculating Probility

Question 1

$1.1 \quad 13 / 50$
$1.2 \quad 37 / 50$
$1.3 \quad$ /50
Question 2
$P(U)=3 / 12=0,25$

Question 3

3.1 \% using other languages = 100\% - (64,4\% + 11,9\% + 9,1\%) $=14,6 \%$

Number speaking other languages $=14 \%$ of $2965600=432977,6 \approx 432978$
$3.2100 \%-21 \%=79 \%$
Question 4
4.1 Total number of customers $=40 \div 20 \%=200$
15% of $200=30$ customers
$4.2 \quad 10+15+20+30=75 \%=0,75$
Question 5
5.1 1 learner since $29 / 100 \times 30=96,76 \%$
$5.2 \quad 65 / 134 \times 100=48,5 \%$
5.3 New -age Secondary School performed better. New-age Secondary entered 153 learners for the matric examination and more of them obtained a degree pass.

Question 6

6.1 $P($ blood type $O)=(39+6)=45 \%$ or $9 / 20$
$6.2 \quad \mathrm{AB}^{+}$
6.3 No, it is not most likely. Can only receive blood from own blood group i.e $P=1 / 8 \therefore$ Not most likely.

B. Prediction

Question 1

Forecasters can only state a probability based on the fact that it snowed on 80% of a day in the past with similar weather conditions. This does not mean that it will definitely snow. There is also a 20% probability of no snow for the southern Drakensberg.

C. Representations for determining Possible Outcomes

1. Tree Diagrams

Question 1

1.1 On tree diagram
1.2 a) $1 / 9$
c) $5 / 9$
b) $4 / 9$

Question 2
2.1 On tree diagram
$2.2 \quad 2 / 8=0,25$
2. Contingency Tables

Question 1

$1.1 \quad 60 / 302$
$1.2^{137} / 302$

Question 2
2.1 $A=19$
$B=15$
$C=61$
2.2 a) $40 / 157$
b) $56 / 157$
c) $15 / 157$
d) $45 / 157$
D. Evaluating Expressions in Probability

Question 1

1.130%
1.2 No. We don't know the actual number of woman involved in the survey, or 70% is not a high enough percentage to make it a leading brand.

5. Maps, Plans and other Representations of the Physical World

A. Scale

Question 1

1.11 unit on the image/plan represents 100 of the same units in reality.
1.250 units on the image/plan represents 1 unit in reality.

Question 2
$2.15 \mathrm{~cm}: 10 \mathrm{~km}$
2.25 cm on the map/plan represents 10 km in reality.
2.35 cm : 10km
$60,5 \mathrm{~cm}$: x
$x=(60,5 \times 10) \div 5=121 \mathrm{~km}$

Question 3

For scale 1:3

Total length of the set $=71 \mathrm{~cm}+34 \mathrm{~cm}=105 \mathrm{~cm}$
Scaled length of the set $=105 \div 3=35 \mathrm{~cm}$
Length of the page is $29,6 \mathrm{~cm}$ (does not fit)
Width of the T-shirt $=57 \mathrm{~cm}$
Scaled width $=19 \mathrm{~cm} \quad \therefore$ The scale $1: 3$ should not be used.
For scale 1: 4
Total length of the set $=71 \mathrm{~cm}+34 \mathrm{~cm}=105 \mathrm{~cm}$
Scaled length of the set $=105 \div 4=26,25 \mathrm{~cm}$
Length of the page is $29,6 \mathrm{~cm}$ (does fit)
Width of the T-shirt $=57 \mathrm{~cm}$
Scaled width $=14,25 \mathrm{~cm} \quad \therefore$ The scale $1: 4$ should be used.
B. Maps

B1: Maps of Small Areas
Question 1
1.1 Row 5 Column 2
1.23 or 4
1.3 South East
$1.432 \times 0,75 \mathrm{~m}^{2}$

B2: Maps of Large Areas(Street Maps)

Question 1
1.1 A1
1.2 a) Turn right into Montagu Drive. Go straight until the intersection of Montagu and East Street. At the intersection turn left. Mark's house can be found on the right hand side on East Street.
b) $0,029 \mathrm{~km} \times 100=2,9 \mathrm{~cm} \quad \mathbf{x}=(2,9 \times 16000) \div 100000=0,46 \mathrm{~km}$
$1 \mathrm{~cm}=16000 \mathrm{~cm}$
$2,9 \mathrm{~cm}$: \mathbf{x}
c) South/ South West
d) North West

Question 2

2.1 C3
2.2 South East
2.3 a) *Drive along Selby Msimang Road in a north-easterly direction.
*At the traffic lights turn right into Sutherland Road.
*Turn right into F.J. Sithole Road.
*Turn left into Nkugwini Road.
*The entrance to the stadium is on the left.
b) Approximately $2,6 \mathrm{~km}$

B3: National Road Maps

Question 1

1.1 a) $4,5 \mathrm{~cm}$
b) $2,2 \mathrm{~cm}=300 \mathrm{~km} \quad$....Also accept $2 \mathrm{~cm}=300 \mathrm{~km}$

$$
4,5 \mathrm{~cm}=x
$$

$$
x=(4,5 \times 300) \div 2,2
$$

$$
=613,64 \mathrm{~km} \approx 614 \mathrm{~km}
$$

1.2 Time $=\underline{614}$

110
= 5,58 h
$=5$ hours and 35 min
$8: 15+5: 35=13: 40 \quad \therefore$ No, they arrived earlier than the predicted time.
1.3 a) Half tank will cost $=\frac{60 \times 10,12}{2}=$ R303,60
$\therefore 30 \mathrm{l}$ cost R303,60
R455, $40 \div$ R10,12 $=45$ l
\therefore The fuel gauge was not working properly.
b) $(15 \times 100) \div 9=166,67 \mathrm{~km}$
1.4 Take the N2 to Durban.

Take the N3 to Harrismith.
Take the N5 to Bloemfontein.
Take the N8 through Kimberley
Take the N10 until Kimberley.
1.4 Rustenburg

B4: Provincial Road Maps
Question 1
1.1 C2
1.2 R617; R56
1.3 South East
1.4 From Herbetdale B\&B, turn right into Hope Street. Continue straight. At the intersection of Coulter Street and Hope Street, turn left. Continue a few metres and turn right into
Main Road. The museum will be on your left.
$1.5 \quad * * *$ The scale on the map is $1: 20000$
Actual distance between the train station and the Town Hall is 1500 m .

B5: Strip Route Maps

Question 1

1.1 N10 and N2
1.2 Mountain Zebra N.P
1.3 Kirkwood
1.4 Distance $=24 \mathrm{~km}+(270 \mathrm{~km}-195 \mathrm{~km})+24 \mathrm{~km}=234 \mathrm{~km}$

B6: Elevation Maps

Question 1

$1.1 \pm 20 \mathrm{~km}$
1.2700 m
1.3 Uphill

B7: Distance Table

Question 1

$1.1 \quad 1133 \mathrm{~km}$
1.2 Durban to East London $=647 \mathrm{~km} \quad$ Total distance $=647 \mathrm{~km}+982 \mathrm{Km}=1629 \mathrm{~km}$ East London to JHB $=982 \mathrm{~km}$
C. Plans

C1: Floor Plans

Question 1

1.1 1:300
1.2 Total Area $=(18 \times 12)+(9 \times 6)$

$$
\begin{aligned}
& =216 \mathrm{~m}^{2}+54 \mathrm{~m}^{2} \\
& =270 \mathrm{~m}^{2}-50 \mathrm{~m}^{2} \\
& =220 \mathrm{~m}^{2}
\end{aligned}
$$

1.3 Area of 1 table $=0,5 \times 0,5=0,25 \mathrm{~m}^{2}$

Number of tiles required $=220 \div 0,25$

$$
\begin{aligned}
& =880 \text { tiles }+(5 \% \text { of } 880) \\
& =924 \text { tiles }
\end{aligned}
$$

1.4 4:1

$$
\begin{aligned}
\text { Black } & =4 / 5 \times 924 \\
& =739,2 \div 12 \\
& =61,6 \\
& \approx 62 \text { boxes }
\end{aligned}
$$

Question 2

2.1 South
2.2 Area of window $=1,60 \mathrm{~m} \times 1,30 \mathrm{~m}=2,08 \mathrm{~m}^{2}$

Area of door $=2,08 \mathrm{~m}+(9 / 100 \times 2,08 \mathrm{~m})$

$$
=2,2672 \mathrm{~m}^{2}
$$

Width of door $=2,2672 \mathrm{~m}^{2} \div 2,14 \mathrm{~m}$

$$
=1,06 \mathrm{~m}
$$

2.3.1 Area of bedroom 2
$=2$ (Area of W wall) +2 (Area of S wall) - area of window - area of door
$=2(3,304 m \times 2,4 m)+2(2,984 m \times 2,4)-2,08 m^{2}-2,267 m^{2}$
$=15,8592 m^{2}-14,3232 m^{2}-4,3472 m^{2}$
$=25,8352 \mathrm{~m}^{2}$
$\approx 25,84 \mathrm{~m}^{2}$
2.3.2 Total area to be painted
$=25,84 \mathrm{~m}^{2}+28,44 \mathrm{~m}^{2}$
$=54,28 \mathrm{~m}^{2}$
Amount of paint needed
$=\frac{54,28}{4}$
4
$=13,57 e$
Number of 5ℓ cans $=\frac{13,57}{5}$
$=2,714$
≈ 3 containers

$$
\begin{aligned}
\text { Cost } & =\text { R169,99 } \times 3 \\
& =\text { R509,97 }
\end{aligned}
$$

\therefore Mrs Wongs estimation was incorrect.
2.4 Total number of hours worked
$=\left(6+6 \times 1 \frac{1}{2}\right)$ hours $=15$ hours
Total labour cost $=15 \times$ R35,90

$$
=R 538,50
$$

\therefore The invoice amount was incorrect.
3.1 Length $=5240-(2 \times 220)=4800 \mathrm{~mm}$

Width $=4040-(2 \times 220)=3600 \mathrm{~mm}$
Floor area $=4800 \times 3600=\frac{17280000 \mathrm{~mm}^{2}}{1000000}$
$=17,28 \mathrm{~m}^{2}$
3.2 Area of ceiling board
$=2400 \times 900=2160000 \mathrm{~mm}^{2}$
Number of boards needed
$=17280000 \mathrm{~mm}^{2}$
2160000
$=8$
\therefore Needs more than 7 .
$\begin{array}{ll}3.3 & 2 \times(4800+3600) \\ & =16800 \mathrm{~mm}\end{array}$
$3.4 \quad 16800 \div 2000=8,4$
Hence, 9 length cornices needed
Total cost $=(8 \times \mathrm{R} 91,44)+(9 \times \mathrm{R} 53,64)$
= R1 214,28
\therefore The statement is correct.

C2: Elevation Plans

Question 1

1.17
$1.270 \mathrm{~mm}: 7000 \mathrm{~m}$
1 : 100
1.39514 mm
$1.439,54-(72 / 100 \times 39,54)=11,07 \mathrm{~m}^{2}$

Question 2

$2.1 \quad 3750 \mathrm{~mm}$
$2.23,55 m+1,7 m+2,05 m=7,3 m$
2.3 Living room
2.4 Bedroom 2
2.5 Wash basin/sink/water basin/shower

C3: Instructions and Assembly Diagrams

Question 1

1.1 D; B; E; A; C
1.2 E or B

D. Models

Question 1

1.1 Volume $27,5 \mathrm{~cm} \times 15 \mathrm{~cm} \times 11,9 \mathrm{~cm}$
$=4908,75 \mathrm{~cm}^{3}$

Question2

2.1 Height of bottle $=\underline{143}$
102\%

$$
=140 \mathrm{~mm}
$$

2.2 Area of base of bottle $=3,142 \times 29^{2}=2642,42 \mathrm{~mm}^{2}$

Length of base of box $=\underline{105} \times 58=60,9 \mathrm{~mm}$
100
Area of base of box $=s^{2}$

$$
\begin{aligned}
& =60,9^{2} \\
& =3708,81 \mathrm{~mm}^{2}
\end{aligned}
$$

Difference in area $=3$ 708, $81-2$ 642, 42

$$
\begin{aligned}
& =1068,07 \mathrm{~mm}^{2} \\
& =10,68 \mathrm{~cm}^{2} \quad \therefore \text { The dimensions satisfy the guidelines. }
\end{aligned}
$$

Question 3

$3.135 \div 16,5=2,12 \approx 2$ layers
3.2 Number of can which can be packed lengthwise
$=56 \div 12$, 6
$=4,44$
≈ 4
Number of cans which can be packed width-wise
$=41 \div 12,6$
$=3,253$
≈ 3
\therefore Maximum number of cans
$=4 \times 3 \times 2$
$=24$

Compiled by Shanira Krishen
Cell. 0727606502
Email: shanira.krishen@gmail.com

